4.3.3 Implementing Life Cycle Management


Implementing Life Cycle Management

Implementation of life cycle management often requires agencies to review existing data sets, processes, and policies to ensure that the recommended scenarios are reflected in the projects and treatments that are programmed and constructed. Within transportation agencies, this often requires improved coordination between business units such as planning, programming, engineering, maintenance and operations. Information about strengthening organizational communication and coordination was discussed in Chapter 3.

This section focuses on the aspects of implementation that are most directly related to using life cycle management results to maximize the service lives of infrastructure assets as cost-effectively as possible. It highlights the need to evaluate agency policy, data issues, and work processes to support life cycle management.

Linking Life Cycle Strategies to Asset Management Policy

Agency policies influence the types of decisions that are made within an agency and the priority with which activities are funded. The life cycle management approach selected for each asset class will impact the type of policies, procedures, and data required to support investment decisions to ensure alignment between planned and actual work activities.

Aligning the organization to support the implementation of life cycle management strategies involves many of the same types of organizational change processes discussed in Chapter 2. As part of this alignment, an agency must ensure that it has in place the processes and resources needed to deliver the work activities required for executing the selected life cycle strategies.

Chapter 2 introduced the importance of establishing Asset Management policies to help integrate asset management at all levels of an organization. An Asset Management policy can support life cycle management by establishing processes for setting realistic performance objectives and treatment strategies that focus on a commitment to sound, long-term investments. The following examples demonstrate how agencies can select a life cycle approach that supports the agency’s higher-level policies.

The following hypothetical examples show how policy and management strategy work together to deliver transportation services and manage risks.

Reactive Strategy Example – Agency A has determined its guardrail inventory is generally in good condition and typically replaced as part of pavement rehabilitation projects. On average, replacements occur at least every 30 years, which is more frequent than the expected service life ranging from 40 years for cable to 75 years for concrete barrier. As a result, the agency can accept a life cycle strategy of maintaining a complete inventory and annual inspection of a random two-percent sample.

This life cycle strategy introduces the risk of a rail being damaged by collisions or other events and left in service, presenting a danger to highway users. To manage this risk, the agency implements a policy of repairing all damaged guardrail within 3 weeks of becoming aware of damage. Additionally, internal procedures are put in place to notify area maintenance managers of incidents reported through the state police accident reporting system, and standby maintenance contracts are established for guardrail repair to ensure adequate resources are available in compliance with the new policy.

Condition-Based Maintenance Example – Agency B has determined it can provide significant, long-term performance improvement in average bridge condition and service life if it can increase its investments in bridge maintenance activities like sealing concrete, repairing joints and spot painting steel. To fund this initiative, however, the agency must replace three fewer bridges on average each year. The short-term impact of this new life cycle strategy is an increase in the risk of unsafe conditions occurring on bridges that would have been replaced under the previous strategy. To overcome this risk, the agency increases the frequency of inspections on bridges exceeding the level of acceptable risk according to analysis from its bridge management system, and a series of standby contracts are established to provide rapid response of specific structural repairs to extend the service lives of poor bridges by addressing only critical structural deficiencies or risks.

Data Required for Implementation

All life cycle management approaches need inventory and performance information, but the extent, detail, accuracy, and precision of the required information varies greatly given the chosen approach.

Assets that are managed using a condition-based approach rely on detailed inventory and performance information so that current and future conditions can be estimated, and the benefits and costs associated with each viable strategy can be evaluated. Interval-, time-based, and reactive approaches can be performed with less detailed information about the assets. Agencies using these approaches may estimate the size and age of the inventory at early levels of maturity. Over time, the type of information available and the level of detail associated with it may improve, allowing the agency to mature in terms of its analysis capabilities.

Table 4.3 provides examples of typical management strategies for common highway asset classes and the types of information used to support each one. The information in table 4.3 reflects general trends in transportation agencies. In practice, each agency must identify the specific elements and data requirements needed to support their needs within resource constraints. Chapter 7 addresses methods of collecting information efficiently (see table 7-3) and Chapter 6 stresses the importance of keeping inventory and performance data current. Establishing data governance structures to manage asset data is also an important consideration, as discussed in Chapter 7.

Table 4.3 - Typical Maintenance Strategies and Supporting Data

Asset TypeTypical Maintenance StrategyTypical Information Collected and Used
PavementsPredictive, condition-based maintenance
  • Linear referencing system
  • Segmentation with unique IDs
  • Inventory (e.g., width, pavement type, and other identifying attributes)
  • Condition data (e.g., ride quality cracking, rutting, faulting, and others)
  • Deterioration models
  • Available treatments
  • Treatment unit costs
BridgesPredictive, condition-based maintenance
  • National Bridge Inventory Data (NBI)
  • National Bridge Element Condition (NBE) Data
  • Vulnerabilities (e.g., scour, seismic, flood)
  • Deterioration Curves
  • Treatment options
  • Unit costs
Overhead Sign StructuresMonitoring-based or Interval-based maintenance
  • Inventory Data, modeled after NBI
  • Element level condition data, modeled after NBE
  • Design life
  • Structural specification (e.g., proper bolt torque)
ITS AssetsInterval-based maintenance
  • Location
  • Asset ID
  • Inventory data to identify type or class
  • Install date
  • Manufacturer recommended service life
GuardrailsReactive maintenance
  • Location
  • Type
  • Functional requirements
Source: FHWA. Handbook for Including Ancillary Assets in Transportation Asset Management Programs. 2019. Prioritizing Assets for Inclusion in Transportation Asset Management (TAM) Programs.

Incorporating Life Cycle Management into Work Planning and Delivery

Life cycle management approaches and corresponding life cycle strategies are the means by which agencies identify the work necessary to meet their asset management goals within funding constraints. However, for those asset management goals to be met, the necessary work must actually be delivered. This requires the recommendations from life cycle analyses to be incorporated into the business processes by which the agency identifies, prioritizes, programs, designs, and delivers work. In most agencies this includes multiple business processes and funding streams. The following subsections describe how life cycle management can be incorporated into common processes within transportation agencies.

Planning and Programming

The planning process seeks to identify the set of investments that will effectively and efficiently achieve an agency’s goals and objectives. As an agency alters its approach to managing assets, this may change assumptions previously influencing the planning process. Significant changes in an agency’s approach to managing its assets can require updates to long-range or strategic plans. Similarly, changes in long-term objectives or plans can prompt a change in life cycle strategy or approach.

Coordination is needed between long range transportation planning, performance-based plans such as the TAMP, and programs of work, such as TIPS and STIPs (see chapter 2). In particular there is a need for alignment between the financial planning procedures and documentation between these different efforts and products. Although programs tend to be relatively short term, often 1 to 4 years in length, agencies must identify investment needs several years in advance to ensure projects can be delivered when required. Complex reconstruction or modernization projects can take 10 years or more to deliver from scoping to construction. Thus, it is important to keep planners informed of changes in selected life cycle strategies. Changing new life cycle strategies may lead to significant differences in the projects selected.

Project Engineering

Life cycle management is a framework for identifying the appropriate treatments throughout an asset’s service life to maximize performance. Project engineering includes the processes for packaging work into contracts for delivery. Thus, project engineering is responsible for ensuring the right treatment is delivered at the right time and within the anticipated cost. Additional details on work packaging to support asset management are provided in chapter 5.

Maintaining strong internal controls ties project decisions to their impacts on anticipated asset performance. Project schedule changes may cause inappropriate treatments to be applied to assets, resulting in unnecessarily high costs or poor performance. Scope changes often lead to cost changes, and while cost changes may be addressed for a specific project, the funds added to that project would not be available to address other system needs.

Use of Agency Maintenance Forces

Effective delivery requires adequate labor capacity with appropriate training, proper equipment, and necessary materials. Changes in an agency’s management approach can alter the requirements for any of these aspects of maintenance management. The necessary treatments cannot be delivered if a properly sized and equipped crew cannot be assembled. Maintenance staff cannot administer treatments for which they are not properly trained or correctly supplied. Therefore, it may be important to have maintenance management staff actively engaged in the process of identifying preferred life cycle management approaches.

Fredericton, New Brunswick

The City of Fredericton has, over the last 15 years, implemented several life cycle management strategies that have significantly changed how they deliver municipal services with their infrastructure. Three examples are briefly summarized below:

  • Long term life cycle planning: Infrastructure accounting policy changes led to the city establishing long term replacement forecasts for each asset class to estimate the sustainable level of funding required for investment for capital budgeting. This required a complete inventory of their assets, changes in how future replacement costs were estimated, as well as changes to the analysis period used for long term planning. At least one life cycle for all assets had to be captured in the forecast horizon.
  • The City implemented a Lean Six Sigma strategy to assess processes and how services were delivered. This methodology helped identify efficiency opportunities, but also identified intervention strategies that previously were not considered in project scoping previously.
  • The City evaluated its labor and outsourcing policies as a consequence of the lean approach, and in some circumstances, shifted resources to have dual roles for service delivery, or used external service providers to be responsible for infrastructure, or service delivery.